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Abstract 

In this study a new remote sensing drought index called Difference Drought Index (DDI) was introduced. DDI was calculated from 

the Terra satellite's MODIS sensor surface reflectance data using visible red, near-infrared and short-wave-infrared spectral bands. 

To characterize the biophysical state of vegetation, vegetation and water indices were used from which drought indices can be de-

rived. The following spectral indices were examined: Difference Vegetation Index (DVI), Normalized Difference Vegetation Index 

(NDVI), Enhanced Vegetation Index (EVI), Difference Water Index (DWI), Normalized Difference Water Index (NDWI), Differ-

ence Drought Index (DDI) and Normalized Difference Drought Index (NDDI). Regression analysis with the Pálfai Drought Index 

(PaDi) and average annual yield of different crops has proven that the Difference Drought Index is applicable in quantifying drought 

intensity. However, after comparison with reference data NDWI performed better than the other indices examined in this study. It 

was also confirmed that the water indices are more sensitive to changes in drought conditions than the vegetation ones. In the future 

we are planning to monitor drought during growing season using high temporal resolution MODIS data products. 
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INTRODUCTION 

Climate change is one of the most significant issues 

facing the world because it is predicted to alter climate 

patterns and increase the frequency of extreme weather 

events. In recent years, the frequency of droughts that 

are due to global warming-related climate change has 

increased and is accompanied by a rise in the severity of 

these phenomena (IPCC, 2013; Trenberth et al., 2014). 

In our days – also in the Carpathian Basin – one of the 

environmental problems waiting for solution is water 

shortage, which is one of the biggest hazards, that causes 

serious damages especially in agriculture in drought-

stricken years (Rakonczai, 2011). We are talking about 

water shortage if water supply falls short on human de-

mand and wildlife needs. It can be caused by the limita-

tions of available resources or the insufficient level of 

utilization of those or/and the increase of society’s 

needs. According to the guide of the International Com-

mission on Irrigation and Drainage (ICID), when pre-

cipitation cannot satisfy water needs, because there is a 

big deficit compared to normal or expected, which ex-

tends to growing season, or longer periods too, then 

there is drought. 

It is hard to define the beginning and the end of 

droughts and quantifying its effects. Meteorological 

drought is characterized by the substantially less rainfall 

compared to multi-year average, this coupled with air 

temperatures exceeding the average and low relative 

humidity. This directly affects agricultural production 

(agricultural drought), which is most often visible on the 

physiological condition of plants to the naked eye, or can 

be seen from satellite above. Depending on the duration 

and the strength of meteorological drought, the soil 

moisture content decreases to the fraction of available 

water capacity (soil drought). If the catchment area is hit 

by meteorological drought, runoff and water level of 

reservoirs, lakes and rivers decreases which is called 

hydrological drought. The magnitude of drought is influ-

enced by local conditions, e.g. more porous, thicker 

topsoil can absorb and store more usable water (Heim, 

2002; Pálfai, 2004; Hao and Singh, 2015).  

In addition to the economic damage caused by per-

sistent drought, social damage can occur too (e.g. high 

prices, restrictions of water usage), as well as drought 

could amplify the existing vulnerability of the social 

classes (Wisner et al., 2004). There is socioeconomic 

drought when demand for economic goods, as the result 

of deficit connected to water supply, exceeds the human 

supply (Wilhite and Glantz, 1985). The Hungarian econ-

omy is frequently hit by droughts which are partly due to 

the unexploited water potential. 

Drought is a relative rather than an absolute condi-

tion that needs to be interpreted separately in every re-

gion and on every group of organisms. Every drought 

differs from one another in intensity, duration and spatial 

extent. In agricultural point of view, drought is a sub-

stantial degree of water shortage of stand of croplands 

and forests which greatly limits the life processes of 
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plants. Without a plant drought cannot be interpreted 

since different plant species react distinctly to the same 

level of drought (Anyamba and Tucker, 2012). 

With the drought assessment in a quick and cost-

effective way, with even the possibility of forecasting, it 

may become possible to increase adaptability of water 

retention. Optimization of the redistribution of water 

resources may become possible if location is known 

where greater need for them is. We could prepare for 

drought or at least moderate its damages by filling up 

reservoirs (partially) satisfying irrigation and ecological 

needs if necessary. Remote sensing methodology pro-

vides one of the ultimate tools that support the water 

management organizations’ operational work  

VULNERABILITY AND SOME INDICATORS 

OF DROUGHT 

Risk is the combination of the probability of an event 

and its negative consequences which is the intersection 

of hazard, vulnerability and exposure. Vulnerability 

which is inversely related to coping capacity is the char-

acteristics and circumstances of a community, system or 

asset that make it susceptible to the damaging effects of 

a hazard (UNISDR, 2009). 

In drought monitoring there are many meteorologi-

cal-statistical method and remote sensing based indices; 

more than a hundred of them is known (Faragó et al., 

1993; Zargar, 2011). The one developed by Palmer (1965) 

in the US, which is calculated from precipitation, tempera-

ture and soil moisture content data, is the so-called Palmer 

Drought Sensitivity Index (PDSI) that has been used in 

Hungarian study areas too (Horváth, 2002). For the Stand-

ardized Precipitation Index (SPI) at least 30 years long 

precipitation dataset is needed. The gamma distribution 

fitted on the empirical probability distribution of the da-

taset has to be transformed to normal distribution; the 

probabilities are the SPI values (McKee et al., 1993). This 

analysis method is very popular (Hayes et al., 2012) in 

Hungary too (DMCSEE, 2010-14; Blanka et al., 2014). 

Mu et al. (2013) used a drought index called 

Drought Severity Index (DSI), which can be generated 

from the ratio of evapotranspiration and potential evapo-

ration (ET/PET), resp. Normalized Difference Vegeta-

tion Index (NDVI), for MODIS sensor data. 

The basic version of Pálfai Drought Index (PAI), 

which is commonly applied in Hungary, is calculated 

from meteorological (daily temperature and precipita-

tion) datasets and we get its actual value when we multi-

ply its base value with empirical correction factors 

(Pálfai, 1989). Fiala et al. (2014) are analyzing the sim-

plified version of PAI (PaDI) in Hungarian and Serbian 

areas with GIS processing; PaDI is calculated from 

monthly average temperature and monthly average pre-

cipitation dataset. 

Spectral indices derived from measurements of 

multispectral sensors like the ones analyzed in our study 

could be a great addition to their method as well. Kovács 

(2007) and Ladányi et al. (2011) identified high drought 

risk areas based on time series of biomass productivity 

from Normalized Difference Vegetation Index (NDVI) 

and Enhanced Vegetation Index (EVI) 

DATA AND STUDY AREA 

Drought indices calculated from Terra MODIS satellite 

images may become suitable in monitoring short term 

spatiotemporal variations in drought intensity at regional 

scale. High temporal resolution allows analyzing environ-

mental change processes. In the course of data processing, 

several pre-calibrated and evaluated products are manufac-

tured which are available free of charge (e.g. GLOVIS 

database). MODIS-composites are compiled from the 

optimal selection of pixel values of satellite images record-

ed during the period of 8 or 16 days. Cell values of compo-

sites are always made of the best data quality pixels availa-

ble (Huete et al., 2002; Vermote and Kotchenova, 2008). 

Selection covers the viewing and illumination geometry, 

the state of the atmosphere and the amount of cloud cover 

e.g. the first half of July is one of the most suitable dates, 

because precipitation in this month has the maximum 

weight since plants require a lot of water in July. In addi-

tion, the occurrence of a drought is the most likely in this 

month (Pálfai, 2004). However, after harvest it is inappro-

priate to choose a date, because harvested croplands can be 

classified as drought-stricken (e. g. time range of wheat 

 

Fig. 1  Hungary, the study area 
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harvest in Hungary is from the end of June to middle of 

July). For our analysis we have chosen two dates: one from 

June and another one from July (Fig. 1).  

For the calculation of spectral indices MOD09A1 

(Collection 5) 500 m resolution 8-day surface reflectance 

composite images (Surface Reflectance 8-Day L3 Global 

500m SIN Grid) between 2000 and 2014 were used 

(Table 1). Spectral band values are multiplied by a factor 

of 10,000. Images are from the 9-16th (resp. 10-17th) of 

June (resp. 10-17th) and the 12-19th (resp. 11-18th) of 

July. In some instances different periods were chosen 

because of high cloud cover. The 16-day 500 m resolu-

tion EVI composite images (MOD13A1 EVI, Vegetation 

Indices 16-Day L3 Global 500m SIN Grid) were ob-

tained for the period of 9-24th (resp. 10-25th) of June and 

of 11-26th (resp. 12-27th) of July. Records from the 

MODIS catalog H/V 19/4 (Lat/Long 45/21.1) were 

downloaded from GLOVIS database [1]. The composites 

are not allowing observing changes on daily scale or less 

than 8 or 16 days long time periods, but they are still 

very good at monitoring changes for longer periods. 
 

Table 1 Spectral bands of MOD09A1 surface reflectance 8-day 

composites (Vermote and Kotchenova 2008) 
 

MOD09A1 bands wavelength (nm) 

1 (visible red) 620-670 

2 (near infrared) 841-876 

3 (visible blue) 459-479 

4 (visible green) 545-565 

5 (SWIR 1) 1230-1250 

6 (SWIR 2) 1628-1652 

7 (SWIR 3) 2105-2155 

SWIR: short-wave infrared 
 

Quality Control and State Flag created for the spec-

tral bands provide information about each pixel’s data 

quality, accuracy and consistency (e.g. cloud cover and 

cloud shadow, dead detector and data interpolated, value 

out of bounds, aerosol quantity of the air, zenith angle of 

sun). The quality control and state bands are storing 

metadata as decimal numbers which have to be converted 

into 16, resp. 32 bit binary series to extract information 

needed for pixel evaluation. 

Before using MODIS data, incorrect, inaccurate or 

inconsistent pixel values have to be excluded from anal-

ysis. The processing tools (LDOPE Tools and MODIS 

Reprojection Tool) provided by the MODIS land quality 

assessment group (Roy et al., 2002) were applied at the 

extraction of quality, cloud cover and cloud shadow 

mask from the 16/32 bit binary quality and state bands. 

General rule is that the lower the value, the better the 

quality. Zero means that there are no quality issues. The 

pixel values defined as incorrect were overwritten by the 

pre-defined no data value of spectral bands (−28,672). 

For the execution of this operation a program was writ-

ten in C language (named MODIS Quality Control Tool) 

which reads in data in ASCII grid  file format. We have 

taken the following bits into consideration with the con-

ditions for pixel evaluation shown in Table 2. The pre-

defined no data value for MOD13A1 data is −3000. The 

strictness of specified conditions in case of MOD09A1 

and MOD13A1 data are very much alike. Data accuracy 

is determined by inaccuracies of cloud filtering, variable 

viewing and illumination geometry, different amount of 

cloud filtered data for averaging, inaccuracy of atmos-

pheric correction. Database can also be cleaned if we are 

not taking into consideration satellite passes with higher 

than 40° zenith angle or providing less than 25% data 

coverage (Huete et al., 2002). 

Data processing and analysis was performed in open-

source geospatial software environment, the following 

programs were used: SAGA GIS 2.1, QGIS 2.4-Chugiac 

(Python 2.7.5, GDAL 1.11.0 and GRASS GIS 6.4.3 inte-

grated into QGIS), R for Windows 3.1.2, MODIS Repro-

jection Tool 4.1, LDOPE Tools 1.7, and own programs 

written in C language in Code::Blocks 10.05 environment. 

Processing was automatized by the use of scripts.  

METHODS 

Characterization of spectral indices   

A new method for drought delineation using MODIS 

surface reflectance data was presented in the paper by 

Gu et al. (2007). It is called Normalized Difference 

Drought Index (NDDI). NDDI (Eq. 1) is derived from 

NDVI and NDWI (Normalized Difference Water Index): 
 

NDDI = (NDVI − NDWI) / (NDVI + NDWI)        (Eq.1) 

where: 

NDVI = (NIR858 nm − red645 nm) / (NIR858 nm + red645 nm), 

NDWI = (NIR858 nm − SWIR2130 nm) / (NIR858 nm + 

SWIR2130 nm), 

NIR: near infrared, SWIR: short wave infrared. 

Table 2 Pixel evaluation of MODIS satellite images using the quality assessment bands 

MOD09A1 MOD13A1 

State Flags: 

     0-1. bits: Cloud State (=0) 

     2. bit: Cloud Shadow (=0) 

Quality Control: 

     2-5. bits: 1st band’s data quality (=0) 

     6-9. bits: 2nd band’s data quality (=0) 

     26-29. bits: 7th band’s data quality (=0) 

 

VI Quality detailed QA: 

     0-1. bits: VI Quality (MODLAND QA bits) (<=1) 

     2-5. bits: VI Usefulness (<=4) 

     15. bit: Possible shadow (=0) 

Pixel reliability QA summary (<=1). 
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NDVI was developed by Rouse et al. (1973), and it 

has been in use for decades for monitoring vegetation 

cover, chlorophyll content and other properties of the 

plants. Absorption of healthy vegetation is very high in the 

visible wavelength range. On the other hand, the near 

infrared channel is located at the high reflectance plateau. 

Dry and unhealthy vegetation canopy has lower NDVI 

value because reflectance in the visible red channel is 

increased, simultaneously in the NIR channel decreased. If 

chlorophyll content is high, then it means that the plant is 

photosynthetically very active, which means high absorp-

tion in visible red and high reflectance in NIR channels. 

NDWI represents the water content in vegetation 

canopies. Absorption by vegetation liquid water around 

858 nm (NIR channel, at the high reflectance plateau of 

vegetation canopy) is negligible, while at around 2130 

nm it is very high. If water content decreases, then in 

SWIR channels reflectance increases significantly, there-

fore the NDWI value decreases showing dry vegetation 

under drought stress. 

Chen et al. (2005) used spectral indices calculated 

from NIR858 nm and SWIR1640 nm, respectively SWIR2130 nm 

bands of MODIS reflectance data for the estimation of 

moisture content of corn and soybeans. Both showed poten-

tial in estimating vegetation moisture content. This NDWI 

is the variation developed by Gao (1996). The study con-

ducted by Gu et al. (2007) showed that NDWI has a strong-

er response to drought conditions than NDVI. The average 

of NDVI and NDWI were consistently lower (NDVI<0.5 

and NDWI<0.3) under drought conditions than under non-

drought conditions (NDVI>0.6 and NDWI>0.4) 

At shallow, turbid waters the water-leaving reflec-

tance at NIR is not negligible, and is not only related to 

phytoplankton abundance, but also to suspended sediment 

concentration. Atmospheric correction of MODIS (the 

“clear water” assumption) fails in the presence of even 

modest quantities of suspended particle matter, because 

NIR water-leaving reflectance is not negligible, and is not 

related to phytoplankton abundance (Chen et al., 2013; 

Wang et al., 2013). Because of that, some parts of water 

surfaces are being classified as drought-stricken in case of 

NDWI and the drought indices. It is the reason why the 

area of Lake Balaton was excluded from our analysis.  

During calculation of NDDI, most of the values are 

transformed into an interval between −1 and +1, howev-

er in spite of quality control extreme out of range values 

are generated too that makes statistical analysis useless. 

With the use of difference drought index (DDI) the 

emerging of extreme out of range values was avoided. It 

is the reason we calculated simple difference index with-

out normalization (Eq. 2): 
 

DDI = DVI – DWI           (Eq. 2) 

where: 

DVI (Difference Vegetation Index) = NIR858 nm − red645 nm, 

DWI (Difference Water Index) = NIR858 nm − SWIR2130 nm. 
 

The lack of normalization, which gets rid of the dif-

ferences in spectral radiance resulting from different 

illumination angle and slope, is the only disadvantage 

DDI has, but the greater part of Hungary is lowlands 

with the dominant land use of croplands, therefore it is a 

small concern. 

The Enhanced Vegetation Index (EVI), as an op-

timized hybrid index, combines the characteristics of 

the Atmospheric Resistant Index (ARVI) and the Soil 

Adjusted Vegetation Index (SAVI). EVI is an NDVI 

variant with correction factors for minimizing atmos-

pheric effects and removing soil-brightness induced 

variations (Solano et al., 2010). The EVI formula is 

written as (Eq. 3): 

 

EVI = G · ((NIR858 nm–red645 nm) / (NIR858 nm+C1·red645 nm 

+C2·blue469 nm+L))               (Eq. 3) 

 

where NIR, red and blue band values are atmospheric-

corrected (for Rayleigh scattering and ozone absorption) 

 

 

Fig. 2 The connection between DVI and DWI on the examined date in July 
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surface reflectance; L is the canopy background adjust-

ment for correcting nonlinear, differential NIR and red 

radiant transfer through a canopy; C1 and C2 are the coef-

ficients of the aerosol resistance term (which uses the blue 

band to correct for aerosol influences in the red band); and 

G is a gain or scaling factor. The coefficients adopted in 

the EVI algorithm are, L=1, C1=6, C2=7.5, and G=2.5. 

Statistical connections between DWI-DVI and NDWI-

NDVI 

Relationships between DWI-DVI and NDWI-NDVI 

were unfolded using linear regression analysis which we 

run for a random sample of 500-600 pixels. We used the 

same random pixels for each date. There is a strong link 

between DWI and DVI; coefficients of determination 

vary from 0.88 to 0.95 in June, and 0.92-0.96 in July. 

Connection between NDWI and NDVI is weaker, coeffi-

cients of determination show greater variability (r2 are 

0.66-0.85 for June and 0.78-0.91 for July) (Fig. 2). 

NDVI has been applied for decades in vegetation 

monitoring (Rouse et al., 1973). High correlation has 

proved water indices to be capable of quantification of 

droughts. There is a strong connection between chloro-

phyll and moisture content of vegetation canopy for 

which are vegetation and water indexes proxies that 

proves the usability of water indices. 

RESULTS  

Spatial extent of drought-stricken areas based on DDI 

and NDWI 

When defining the value range of drought classes one 

huge advantage cluster analysis or other automatic clas-

sification algorithms have that we extract information 

from data without subjective interference. We used a 

cluster analysis method by Forgy (1965) called Iterative 

Minimum Distance for DDI data. Best results were ob-

tained when setting eight outgoing clusters. Before the 

first iteration data was normalized with standard devia-

tion. Separate classes were created, each containing 

pixels with similar drought intensity. 

We calculated the DDI average for each date and 

the average of all June and July records between 2000 

and 2014 (DDIJune=505.67 and DDIJuly=520.95). If DDI 

mean exceeds these thresholds than the given time peri-

od is considered to be drought-stricken. Based on the 

rule June was drought-stricken in 2000, 2001, 2002, 

2003 and 2009, and in case of July in 2000, 2001, 2002, 

2003, 2007, 2009, 2012 and 2014. After that we aver-

aged the DDI averages of drought years (DDIJune=578.86 

and DDIJuly=586.25) to get the drought threshold limits 

of DDI. The cluster mean of drought clusters exceeds 

these threshold limits. The difference between the aver-

age of drought and non-drought years referring to time 

series of the two months is 122 and 140 (June and July 

respectively). Based on class means we separated 4 

drought intensity categories from the classes in the ex-

amined periods (Table 3). The DDI threshold of July 

(650) based on the cluster means between drought and 

non-drought is higher than the average of DDI (586) in 

drought years. The average of DWI, which is one of the 

factors influencing DDI values, is 1856 in drought years 

while it is 2197 in mild and wet years in July. In case of 

DVI, the other factor, these values are 2442 and 2639 

respectively. By the differences DWI reacts more sensi-

tively to drought condition than DVI. In case of the June 

values compared to the July ones DWI shows less, but 

still higher difference (189) between drought (2082) and 

non-drought (2271) average than DVI (difference is 107. 

Water indices are more sensitive to drought conditions 

than the vegetation ones. In order to utilize the high 

sensitivity of water indices we calculated the drought 

categories based on the vegetation liquid water content 

for NDWI too (Table 3).  

Table 3 Created drought categories based on DDI and NDWI 

DDI categories Description 

DDI <0 wet, water cover 

0<= DDI <650 no drought 

650<= DDI <812 weak drought 

812<= DDI <1053 moderate drought 

1053<= DDI <1319 strong drought 

1319<= DDI very strong drought 

 

NDWI categories Description 

0.7<= NDWI very high moisture content 

0.6<= NDWI <0.7 high moisture content 

0.6<= NDWI <0.5 moderate moisture content 

0.4<= NDWI <0.5 low moisture content 

0.3<= NDWI <0.4 weak drought 

0.2<= NDWI <0.3 moderate drought 

0<= NDWI <0.2 strong drought 

NDWI <0 very strong drought 

 

After defining drought categories for NDWI, we 

excluded the weak drought class because compared to 

DDI we would have overestimated the spatial extent of 

droughts. In case of NDWI pixels with value under 0.3 

are considered to be drought-stricken. The results from 

DDI and NDWI coincide very well (r2=0.91). Spatial 

extent of droughts for July is shown in Fig 3. 

Average spatial extent of drought according to 

DDI was 22,778 km2 in July. Average area was ex-

ceeded in 2000, 2001, 2002, 2003, 2007, 2009, 2012 

and 2014. Spatial extent of drought was lowest (7,669 

km2) in 2005 according to DDI, but in case of NDWI in 

2004 (7,454 km2). The biggest drought was in 2007 

which hit 42,452 square kilometers according to DDI. 

On the other hand NDWI showed that the spatial extent 

of drought was greatest in 2000 (35,846 km2), however 

area hit by strong and very strong drought peaked in 

2007 (in case of DDI the moderate drought areas cul-

minated as well). In the ranking 2007 and 2000 are 

followed by 2003 and 2002 in July. 
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Fig. 3 Extent of drought affected areas in July according to DDI 

 

 

Fig. 4 Geographic distribution of drought areas according to DDI in July 
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DDI averages in June and in July show a great divergence 

in 2007 indicating that drought appeared first in July. In 

contrast, drought in 2003 was noticeable too. The differ-

ence between consecutive years stands out in 2003-2004 

and in 2006-2007. In addition, higher annual variability 

between 2006 and 2010 is worth for mentioning. Geo-

graphical distribution of drought based on DDI and NDWI 

in July are shown on Fig. 4 and 5 where the high vulnera-

bility of Danube–Tisza Interfluve stands out very well. 

Comparison of results with reference data 

To test the validity of spectral indices we analyzed 

their relationship with the Pálfai Drought Index (PAI) 

for the whole country and for the Great Plains only. 

Based on Pálfai (2011) the western border of the 

Great Plains was set to the midstream of River Dan-

ube. PAI data was obtained from the discussion paper 

of the National Drought Strategy (Hungarian Ministry 

of Rural Development 2012). 

We compared the spectral index averages with the 

following reference data provided by CSO [2, 3]: crop 

yields of cereals (wheat, durum wheat, rye, barley, oat, 

triticale, corn, maslin (mixture of wheat and rye), rice, 

other cereals (indian rice, millet, canary seed, sorghum, 

buckwheat)) between 2000 and 2013, corn and wheat 

yields between 2000 and 2012 and irrigation water use of 

agriculture (labeled as „all sold water for irrigation, rice 

production included”). These data only applies to agricul-

tural land, therefore we clipped DDI data with the area of 

the „non-irrigated arable land” category of the Corine 

Land Cover Database (CLC2012) [4]. In our current study 

we could only relate yields of different crops and irriga-

tion data to the area of croplands based on CLC2012. 

Because of the lack of available data we could not differ-

entiate between the fields of different cereals. Croplands 

can be identified in the knowledge of the dataset, since 

crops with similar growing cycle develop in a similar 

matter in a given year (Kern et al., 2014). 

 

Fig. 5 Geographic distribution of drought areas according to NDWI in July 
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The spectral index values in June did not perform 

as well as the July ones. The spectral index-PAI rela-

tionships were weak and statistically insignificant ex-

cept for DDI and NDDI, which performed slightly 

better (between DDI and countrywide PAI r2=0.54, 

while between NDDI and PAI for the Hungarian Plain 

r2=0.52). The correlations with yield data were very 

low, except for wheat-EVI (r2=0.62) and wheat-DWI 

(r2=0.62) correlations. No link was found with irriga-

tion water use. 

On the other hand, spectral indices performed well 

in July. The drought indices show positive trend with 

PAI; in contrast, vegetation and water indices a nega-

tive trend. Drought indices and crop yields are inverse-

ly related. Irrigation water use is directly proportional 

to DDI and NDDI. The opposite is true for vegetation 

and water indices: direct proportion to PAI and to crop 

yields and inverse proportion to water use. Normalized 

difference indices have a stronger link with reference 

data compared to simple difference indices, except for 

DDI which performed similar to NDDI (Table 4). 

Based on the coefficients of determination in July, 

not the drought indices performed best, but NDWI. 

NDWI has the strongest link with PAI in case of the 

area of the Hungarian Plain, plus a strong one for the 

whole country as well. Strong statistical connections 

with all cereals’ and corn yields were observed. In 

addition, NDWI has a moderate high correlation with 

agricultural water use. DWI is not far behind except 

for water use. 

DDI has a strong link with PAI, but a weak one 

with agricultural water use; DDI shows moderate 

strong correlations with all cereals and corn yields. 

PAI-DVI and PAI-EVI links were the weakest 

among the indexes, but EVI and DVI show a bit 

stronger link with corn yield data then DDI or NDDI. 

The NDVI-PAI relationship is stronger; in case of all 

cereal and corn yield data NDVI performed similar to 

DVI. Connections with irrigation water use were most-

ly weak; highest in case of NDVI and NDWI. In the 

harvesting period of wheat, we compared the spectral 

index averages of the harvested fields with the yields 

too, so the regression results for wheat which are statis-

tically insignificant are not valid for July. 

DISCUSSION 

Although DDI performed adequately in drought detec-

tion, it may not be the best choice. On the whole, 

NDWI shows stronger links to reference data then the 

other spectral indices. 

At the evaluation of results we have to take into 

consideration that crop yields are influenced by a 

number of environmental factors besides droughts: 

harvesting date is not constant it varies annually de-

pending on how much precipitation there is, growing 

degree units plants get, coping capacity or tolerance 

of different crops, e.g. Besides drought, cold and wet 

weather, inland excess water, pest or an extreme 

weather event like rainstorm or hailstorm can also 

damage crop yields. Coping capacity of the plants is 

different; soil properties like fertility, water holding 

capacity, permeability have an influence on the yield 

too. Strength of the link between spectral indices and 

crop yields varies between months or years and be-

tween different areas as well. 

The Difference Drought Index detects agricultur-

al drought (via biophysical changes of the plants) 

whereas the Pálfai Drought Index rather  detects mete-

orological drought (through precipitation and tem-

perature time series). Moreover, the distance between 

meteorological stations is great (up to more than 10 

kilometers) so the geometrical resolution of data is 

significantly less than 500 meters that MODIS reflec-

tance data provides. Differences of spatial resolution 

may have influenced the tightness of linear fit. On the 

other hand, because of atmospheric effects some of 

the pixels had to be excluded from analysis may in-

crease uncertainty of results. For our analysis we have 

chosen satellite images recorded in a relative cloud-

free 8 day periods in order to keep errors originating 

from atmospheric effects at the lowest level possible. 

CONCLUSIONS 

The new remote sensing based difference drought index 

(DDI) performed above expectations during the analysis 

which is proven by the strong link between DDI and the 

PAI. Even though they combine water and vegetation 

Table 4 Performance comparison of indices according to values of the coefficients of determination (r2) in July 

 Index 

PAI 

(Hungarian 

Plain) 

PAI (whole 

country) 
All cereals [kg/ha] 

Corn 

[kg/ha] 

Wheat 

[kg/ha] 

Irrigation water 

[million m3] 

MOD09A1 

DDI 0.87 0.81 0.67 0.63 0.37 0.51 

NDDI 0.85 0.77 0.65 0.64 0.31 0.48 

DWI 0.81 0.75 0.79 0.77 0.47 0.52 

NDWI 0.90 0.80 0.80 0.78 0.48 0.64 

DVI 0.60 0.62 0.69 0.68 0.42 0.42 

NDVI 0.78 0.71 0.72 0.73 0.44 0.64 

MOD13A1 EVI 0.63 0.67 0.81 0.76 0.41 0.35 
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indices, DDI and NDDI did not performed better com-

pared to NDWI which is an ultimate vegetation moisture 

index. Our results imply that NDWI, which is a proxy 

for changes in moisture content of the canopy, reacts to 

drought conditions more sensitively than NDVI (or the 

other indices), because in case of a drought water loss 

occurs sooner than the reduction of chlorophyll content 

of vegetation. Because of its advantages, NDWI may 

become widespread in Hungary. 

In the future we are planning to monitor drought dur-

ing growing season using high temporal resolution 

MODIS data products in order to see how spectral indices 

react to seasonal variations of photosynthetic activity and 

moisture content of vegetation canopy in more detail. 
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