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Abstract 

Inland excess water floodings are a common problem in the Carpathian Basin. Nearly every year large areas are covered by water 

due to lack of natural runoff of superfluous water. To study the development of this phenomenon it is necessary to determine where 

these inundations are occurring. This research evaluates different methods to classify inland excess water occurrences on a study area 

covering south-east Hungary and northern Serbia. The region is susceptible to this type of flooding due to its geographical circum-

stances. Three separate methods are used to determine their applicability to the problem. The methods use the same input data set but 

differ in approach and complexity. The input data set consists of a mosaic of RapidEye medium resolution satellite images. The 

results of the classifications show that all three methods can be applied to the problem and provide high quality satellite based inland 

excess water maps over a large area. 
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INTRODUCTION 

The year 2010 was one of the wettest years ever on 

the Carpathian Basin. In Szeged, almost twice as 

much precipitation fell as the long term yearly aver-

age (Van Leeuwen et al., 2012). This caused excep-

tionally large areas to be flooded by water. This phe-

nomenon where water remains temporary in local 

depression because of a surplus of water due to lack 

of runoff, insufficient evaporation and low infiltration 

capacity of the soil or due to upwelling of ground 

water is called inland excess water. Factors that de-

termine the sensitivity of an area to inland excess 

water are among others meteorology, relief, soil, 

groundwater, and human influences like land use and 

the construction of water works (Pálfai, 2004). Inland 

excess water damages crops, obstructs agricultural 

activities and local transportation, leads to soil and 

groundwater contamination and deterioration of the 

soil quality in the long term. In the border region of 

Hungary and Serbia, the natural circumstances are 

such that the area is vulnerable to inland excess water. 

Different methods have been developed to de-

termine the extent and location of inland excess water. 

Before the development of remote sensing techniques, 

the inundations could only be measured by observa-

tion in the field. This methods is expensive, time con-

suming and inaccurate. Visual interpretation of aerial 

photographs of inundated areas reduced the time 

needed to identify the floodings and reduced the inac-

curacy but is expensive. This study uses (semi-) 

automatic classification methods to determine the 

occurrences of inland excess water based on satellite 

images. Provided that their resolution is high enough, 

satellite image classification can yield accurate results 

and is less expensive than traditional methods. 

STUDY AREA 

The study area is located in the cross border area be-

tween south-east Hungary and northern Serbia, cover-

ing 1600 km
2
 in the wider surrounding of the towns of 

Szeged, Kanjiža and Novi Knezevac, extending on both 

sides of the Tisza River (Fig. 1). This relatively flat, 

and generally low lying territory (between 75 and 150 

m) was formed predominantly by fluvial processes, as 

is illustrated by the abandoned meanders, natural lev-

ees, point-bar systems, scour channels and swales of 

the Maros and Tisza Rivers (Mezősi, 1983; Benyhe and 
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Kiss 2012), and also partly by eolian processes which 

shaped the higher geomorphologic units of loess ter-

races and sands (Bukurov, 1975; Davidović et al., 

2003; Košćal et al., 2005). 

 

Fig. 1 Overview map of the Hungarian – Serbian study area 

Agriculture is one of the predominant economic 

activities, which also suffers the most damages due to 

the inundations. Inland excess water occurs fre-

quently, mostly in low lying zones and also on higher 

geomorphologic units where local topographical, 

geological, hydrological and pedological conditions 

allow the formation of temporary standing surface 

water.  

DATA AND METHODS 

For this study, RapidEye satellite images were col-

lected on March 24 and 25 of 2011, during the severe 

inland excess period of 2010-2011. The individual 

images were atmospherically corrected and mosaiced 

together covering an area of 5000 km
2
. From the large 

mosaic, a sub image was created showing an area of 

about 40 x 40 kilometer (Fig. 2). Even after the at-

mospheric correction, several areas in the mosaic are 

severely affected by haze. This influences the quality 

of the classification results.  

The RapidEye constellation, launched in 2008, is 

a system of 5 commercially operated satellites each 

carrying a 5-band multi-spectral imaging instrument 

providing daily revisiting time for every location be-

tween 84° N and 84° S on the Earth surface 

(RapidEye, 2012). The instrument acquires images in 

the spectral range between 440 and 850 nm (Table 1) 

with a spatial resolution of 6.5 meter (resampled to a 

pixel size of 5 meter) at nadir and a swath width of 77 

kilometer. Due to the programmability of the satel-

lites, they are more flexible than other satellites with 

global coverage like the Landsat satellites. 

 

Fig. 2 RapidEye false color composite (bands 5-4-1) of the 

study area 

Table 1 Spectral characteristics of RapidEye images 

Band Name Spectral range (nm) 

1 Blue 440 – 510 

2 Green 520 – 590 

3 Red 630 – 685 

4 Red-Edge 690 – 730 

5 Near Infrared 760 – 850 
 

To investigate the best method to identify inland excess 

water based on remote sensing data, three classifications 

methods are executed on a RapidEye satellite image using 

the same training data set. The classification results were 

compared with areas defined in the training set. 

Training data set 

A training data set consisting of 8 classes (Table 2) was 

derived by delineating samples using a seed method, 

where starting from one clear pixel – adjacent, spectrally 

similar – pixels were selected. In this way, a minimum of 

spectrally mixed pixels is added to the training data set. 

Every class is represented by several thousands of pixels. 

Proper sampling of the intermediate classes like satu-

rated soil and vegetation in water is difficult without 

fieldwork, and therefore these classes are not included. A 

“High albedo” class was added to the training class con-

taining very bright pixels. 

Table 2 Training classes 

 Class name  Class name 

1 Inland excess water 5 Vegetation3 

2 High albedo 6 Deep water 

3 Vegetation1 7 Bare soil 

4 Vegetation2 8 Shallow water 
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Maximum Likelihood 

The Maximum likelihood (ML) classification is a com-

monly used supervised classification technique, which 

directly uses all bands of the data set to define the statis-

tical relationship between the input and output data. The 

maximum likelihood classification is a statistical ap-

proach where the probability of a pixel belonging to each 

of the predefined set of classes is calculated, and the 

pixel is then assigned to the class for which the probabil-

ity is the highest (Tso and Mather, 2009). The method 

assumes a multivariate normal (Gaussian) distribution of 

the classes in the data set. This assumption of normality 

is generally reasonable for spectral response distributions 

in satellite imagery (Lillesand et al., 2004). The method 

is computational intensive because the probability for 

every class needs to be calculated. 

Spectral Mixture Analyses 

The aim of Spectral Mixture Analysis (SMA) is to de-

termine the spatial ratio of spectrally homogeneous land 

cover types, the so-called endmembers, within a pixel. 

Each endmember specifies an unmixed, pure land cover 

type. The Linear Spectral Mixture Analysis (LSMA) is 

an improvement of the SMA method, by which the ratio 

of land cover types can be determined by using mini-

mum two, and in case of a RapidEye image, maximum 

five endmembers. To be able to solve the linear system 

of equations (1), the number of the endmembers has to 

be less than or equal to the number of the spectral bands 

of the image.  
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Rb: the reflectance value of the image in band b; 

N: the number of endmembers; 

fi: the ratio factor of endmember i; 

Rib: the reflectance value of the ith endmember in band b; 

εb: residual error. 

The sum of the ratio factors of the endmembers equals 1 

in every pixel and fi ≥ 0. 
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The suitability of the model can be determined on the 

basis of the εb residual error or on the basis of the value 

of the root mean square error (RMSE) for each band of 

the image. 
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(3) 

There are several techniques to select the endmem-

bers. They can be selected from the different bands of the 

satellite images or 2 D scatter plots worked out from the 

bands (Rashed et al., 2001). By Principal Component 

Analysis (PCA), the endmembers are easier to determine, 

since it assembles almost 90% of the data variance into the 

first two or three bands and reduces the correlation be-

tween the bands to a minimum (Smith et al., 1985). An-

other frequently used method is to apply a transformation 

called the minimum noise fraction (MNF) method. This 

method consists of two main steps: (1) in the first step the 

noise fractions of the data set are decorrelated and re-

scaled on the basis of an estimated noise covariance ma-

trix, resulting in transformed data, of which the noise has 

unit variance and where there is no correlation between 

the bands; (2) in the second step a traditional PCA is car-

ried out (Green et al., 1988). In this research, the PCA 

method was used to determine the endmembers. 

In the first step, PCA images were created for the 

RapidEye image taken on 24th March 2011, which re-

sulted in another 5 bands. The information content of the 

images is continuously decreasing after one another, thus 

the first three bands contain 98.9% of the total information 

content. The last bands predominantly contain noise.  

Based on the first three PCA images, three endmem-

bers were defined for the linear spectral mixture: (1) the 

water surfaces, (2) the vegetation, and (3) the soil. These 

endmembers were pointed out in the spectral space 

formed by the first three PCA-bands and were detected at 

the margins and peaks of the 2D scatter plot. In the created 

fraction maps, for every single pixel the percentage of one 

of the three categories is calculated. A pixel value of 1 

means that the pixel is homogenous and that it consists of 

100% of the specific category. In the final step of the 

SMA methods, the newly generated 3 band endmember 

composite is used as input data for a maximum likelihood 

classification as described above. In the LM classification 

the same training data set was used as in the other two 

classification methods.  

Artificial neural networks 

Artificial neural networks (ANN) are computational 

models that mimic the functioning of the human brain. 

They are computational mechanisms that are able to 

acquire, represent, and compute a mapping from one 

multivariate space of information to another, given a 

set of data representing that mapping (Atkinson and 

Tatnall, 1997). Schematically, a basic artificial neural 

network can be presented as a structure consisting of 

multiple layers of interconnected nodes as shown in 

Figure 3. 

 

Fig. 3 Basic artificial neural network 
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The application of ANNs consists of two phases. 

The first phase is called the training phase. During 

this phase the ANN is presented with an input and an 

associate output data set.  The training is a process 

that aims to adapt the network internally in such a 

way that the calculated results from the network are as 

close as possible to the expected results. Iteratively, 

the internal weights are adapted based on the direction 

in which the error is moving. When the error is not 

decreasing anymore, the weights are fixed and the 

network is stored. Subsequently, the network is used 

in the simulation phase where the trained network is 

presented with a new input data set that is similar to 

the input data set of the training phase. If the network 

was trained properly and the new input data covers the 

same problem domain as during the training phase, 

accurate results can be obtained. 

One of the most popular artificial neural models 

used in pattern classification, prediction and regression 

tasks is the multilayer perceptron (MLP) (Atkinson and 

Tatnall, 1997; Demuth et al., 2010; Pradhan et al., 

2010). An MLP is the feed forward multilayer network 

where a signal propagates in a forward manner from 

one layer to the next layer and is modified by the asso-

ciated weights of each connection (Pradhan et al., 

2010). This means that there is neither direct, nor indi-

rect influence from a given neuron to its own inputs. 

The network has an input layer, at least one hidden 

layer and an output layer.  

In an MLP, the signal of all input neurons is 

weighted and summed to a net output. This net output is 

then evaluated by an activation function where it pro-

duces an output. Different activation functions exist but 

with MLPs usually – and also in this study – log-sigmoid 

functions are used, which ensure non-linearity to the 

method.  

MLPs are often combined with a backpropagation 

learning algorithm. The algorithm randomly selects the 

initial weights for every neuron and then calculates an 

output based on a set of inputs. The calculated outputs 

are compared to the expected output and the error is 

calculated. Subsequently, the weights are adapted based 

on the errors in such a way that the total error is distrib-

uted among the neurons in the network (Yang and 

Rosenbaum, 2001). To be able to calculate the effect of 

the change of the individual weights the first derivative 

of the activation function is needed. This requires that 

the activation function is differentiable. The process of 

feeding forward signals and back-propagating the errors 

via the output layer to the hidden layer is repeated itera-

tively until some targeted minimal error is achieved 

between the desired and actual output values of the net-

work (Dawson and Wilby, 2001; Pijanowski et al., 2002, 

Pradhan et al., 2010). The weights are then stored to 

retain the knowledge in the network. After training, 

when presented with an arbitrary input pattern that is 

noisy or incomplete, the neurons in the hidden layers of 

the network will respond with an active output, if the 

new input contains a pattern that resembles the feature 

the individual neurons learned to recognize during the 

training (Hagan et al., 1996; Freeman and Skapura, 

1991). 

To calculated the inland excess water results in this 

study, a GIS - ANN framework (Van  Leeuwen et al., 

2012) was used, that is based on ArcGIS, a geographic 

information system and Matlab, a mathematical model-

ing software.  

RESULTS 

Validation is not possible based on ground truth data 

because it is not possible to collect inland excess 

water information from such a large area. Therefore 

internal validation is executed based on the training 

areas. This means that the results of the classifica-

tions are compared with the predefined training sets. 

In the case of the maximum likelihood and spectral 

mixture analysis all pixels from the input training set 

were used to perform the classification, while in case 

of the artificial neural network classification 70% of 

the training data was used for actual training and the 

other 30% was used for testing and validation of the 

training.  

Table 3 Cross table showing the training validation of the maximum likelihood classification 

Training 
ML result Number 

of pixels 

User 

Acc 
1 2 3 4 5 6 7 8 

1 2944 0 0 0 25 1096 0 8 4073 0.72 

2 0 3542 0 0 0 0 67 0 3609 0.98 

3 0 0 4568 9 0 0 0 0 4577 1.00 

4 0 4 133 9774 112 0 3 0 10026 0.97 

5 19 0 0 36 5408 0 0 2 5465 0.99 

6 995 0 0 0 1 8968 0 0 9964 0.90 

7 0 187 0 13 1 0 9489 0 9690 0.98 

8 0 0 0 0 0 0 10 8929 8939 1.00 

# of pixels 3958 3733 4701 9832 5547 10064 9569 8939 56343 
 

Prod. Acc. 0.74 0.95 0.97 0.99 0.97 0.89 0.99 1.00  OA=0.95 
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Maximum likelihood 

The maximum likelihood classification has an overall 

accuracy of 0.95 (Table 3). The most problematic 

class is the Inland excess water (1) class with a user 

accuracy of 0.72. Many pixels are classified as Deep 

water (6). Obviously when combining these classes 

and the Shallow water (8) class as well, the results are 

much better. In this case, both the user and producer 

accuracy for the combined water class is 0.99. All 

other classes show very little misclassification. 

Visual inspection of the output map reveals large areas 

covered with water in the east and south east (Fig. 4). 

The large lake systems in the north and along the Tisza 

River are properly classified. The areas with High al-

bedo (2) are found in the city of Szeged, on the sand 

soils in the north-west, and in the south center. 

 

Fig. 4 Maximum likelihood classification result 

Spectral mixture analysis 

The overall accuracy of the SMA classification was 0.75 

(Table 4). The accuracy of the Inland excess water (1) 

and Shallow water classes (8) are about 0.80 though. The 

Deep water class (6) is often misclassified as Soil (7). 

The reflectance of water is influenced by many factors, 

like suspended solids, water depth, bottom sediments, 

turbidity and color (Moore, 1980). These may cause 

classification errors. These errors are already appearing 

in the fraction images (Fig. 5). During this processing 

step, the high soil fraction in the lakes and the Tisza 

River is clearly visible.  

 
Fig. 5 Color composite of the three fraction maps (Red: soil, 

Green: vegetation, Blue: water) 

The user accuracy of the High albedo class (2) is 

low due to extreme misclassification of the pixels as 

Bare soil (7) (Table 4). This is happening in areas with 

sandy soils, which have a very high reflectance.  

On the thematic map resulting from the ML 

classification of the spectral mixture analysis result, it can 

Table 4 Cross table showing the training validation of the spectral mixture analysis classification 

Training 
SMA result Number 

of pixels 

User 

Acc. 
1 2 3 4 5 6 7 8 

1 3318 0 0 0 26 729 0 0 4073 0.81 

2 0 75 0 0 0 0 3534 0 3609 0.02 

3 0 0 4577 0 0 0 0 0 4577 1.00 

4 0 0 153 9783 90 0 0 0 10026 0.98 

5 5 0 0 74 5386 0 0 0 5465 0.99 

6 1816 0 0 0 1 8147 0 0 9964 0.82 

7 0 0 0 0 1 0 9689 0 9690 1.00 

8 3 0 0 0 0 0 7519 1417 8939 0.16 

# of pixels 5142 75 4730 9857 5504 8876 20742 1417 56343 
 

Prod. Acc. 0.65 1.00 0.97 0.99 0.98 0.92 0.47 1.00 0.65 OA= 0.75 
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be seen that Deep water (6) is sometimes 

misclassified as Soil (6) (Fig. 6). The large lake in the 

North (Fehér tó) and the Tisza River are assigned to 

the Soil class. The classification results of the Inland 

excess water class (1) are similar for all three 

classification methods. The High albedo class (2) is 

occuring the least often. This class is only found in 

smaller patches in the north west of the thematic map.  

 

 

Fig.6 Spectral mapping analysis result 

Artificial neural network 

The classification using an artificial neural network 

also mixes the different water classes (1, 6, 8) (Table 

5). Combining these classes into one bigger class 

increases the producer accuracy from 0.84 to 0.99 and 

the user accuracy from 0.68 to 0.99. Other misclassi-

fication only rarely happen resulting in an overall 

classification of 0.96.  

The thematic map showing the classification re-

sult of the ANN method (Fig. 7) is similar to the ML 

result, although more areas are classified as High 

albedo (2) and less as Soil (7). Like with the SMA 

method, a part of the Fehér tó is misclassified as Soil. 

The Vegetation 3 class (5) is less common in this 

result compared to the other two methods, while the 

Vegetation 2 class (4) can be found more frequently.  

 

 

Fig. 7 Artificial neural network classification result 

Comparison 

All three classification methods result in a map showing 

areas where inland excess water was occurring during 

the acquisition of the images. Visually, the results seem 

quite similar, but the statistical comparison shows large 

differences (Tables 4-6). The SMA classification shows 

the lowest overall accuracy, but this is mainly due to the 

misclassification of one class. The ML and ANN meth-

Table 5 Cross table showing the training validation of the artificial neural network classification 

Training 
ANN result Number 

of pixels 

User 

Acc 
1 2 3 4 5 6 7 8 

1 2754 0 0 0 18 1297 0 4 4073 0.68 

2 0 3542 0 0 0 0 67 0 3609 0.98 

3 0 0 4565 12 0 0 0 0 4577 1.00 

4 0 0 10 9965 42 0 9 0 10026 0.99 

5 25 0 0 61 5377 1 0 1 5465 0.98 

6 508 0 0 0 1 9455 0 0 9964 0.05 

7 0 54 0 3 3 0 9630 0 9690 0.99 

8 0 0 0 0 0 0 3 8936 8939 1.00 

# of pixels 3287 3596 4575 10041 5441 10753 9709 8941 56343 
 

Prod. Acc. 0.84 0.98 1.00 0.99 0.99 0.88 0.99 1.00  OA=0.96 
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ods have similar overall accuracies. The Maximum Like-

lihood classification method is relatively simple and 

requires the least user input.  

The overall accuracy is based on the principal 

diagonal of the confusion matrix only, and thus does 

not use the information from the whole confusion 

matrix. The Kappa coefficient (Cohen, 1960) though 

provides a measure of agreement between predicted 

values and the observed values while using all in-

formation in the confusion matrix (Tso and Mather 

2009). Its value is always less than or equal to 1. A 

value of 1 implies perfect agreement and values less 

than 1 imply less than perfect agreement. Table 5 

shows the Kappa and overall accuracy values for the 

three classifications. 

Table 6 Accuracy measurements of the three classification 

methods 

 Overall 

accuracy 

Cohen’s 

Kappa 

Maximum Likelihood 0.95 0.94 

Spectral mixture analysis 0.75 0.71 

Artificial neural network 0.96 0.96 

Also the amount and type of water differs per 

methods (Fig. 8). Most pixels are classified as Inland 

excess water with the SMA method, while with this 

method the Shallow water class is identified far less 

frequently. The inland excess water pixels are probably 

classified as shallow water by the other methods. 

 

 

Fig. 8 Distribution of water classes per classification method  

CONCLUSION 

All three methods can be applied to classify inland ex-

cess water successfully and provide high quality maps of 

the inundations based on satellite data from a large area. 

There are difficulties for all methods though to distin-

guish between different type of water classes. The over-

all accuracy and Kappa coefficient of all classifications 

is high, but large individual differences exist. The im-

ages of the RapidEye satellite constellation have a high 

temporal coverage, large spatial coverage and acceptable 

spatial resolution. This makes them very suitable for 

inland excess water studies. 
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